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ABSTRACT
The purpose of this study was to examine the effects of an online sports nutrition curriculum on athletic performance and iron status 

in high school-aged male and female athletes. A repeated-measures design evaluated forty-three males (n=18) and females (n=25). Athletic 
performance and biomarkers of iron status were measured before and after participating in an eight-week online sports nutrition curriculum. 
Performance tests included vertical jump height and power (VJPP and VJH, respectively), broad jump (BJ), pro-agility (PA), L-cone (LC), 
20-yard-dash (20YD), and push up strength and power (PPUF and PPUPP, respectively). Concentrations of ferritin, soluble transferrin receptor 
(sTfR), and hemoglobin (Hb) were reported from capillary blood samples. Dietary recalls were collected as part of the first curriculum lesson. 
There were no changes in any measurement from pre- to post-curriculum (p=0.070 – 0.977). As expected, males were greater than females 
for VJH, VJH·kg-1, VJPP, VJPP·kg-1, BJ, BJ·kg-1, PA, LC, 20YD, and ferritin concentrations (p<0.001 – 0.039), but there were no sex differences for 
PA·kg-1, LC·kg-1, 20YD·kg-1, PPUF, PPUF·kg-1, PPUP, PPUP·kg-1, Hb, Hb·kg fat-free mass (FFM)-1, ferritin·kg FFM-1, sTfR, and sTfR·kg FFM-1(p=0.075 
– 0.952). While males met most recommendations, females were below recommendations for energy, carbohydrate, protein, and iron intakes. 
Although the sports nutrition education did not directly enhance athletic performance or iron status, high school-aged female athletes may 
benefit from sports nutrition education to encourage dietary intakes that fall within recommended ranges. 
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Introduction
Training demands for athletic performance requires adequate 

calories, macronutrients, and micronutrients to not only optimize 
performance, but to also ensure the health and well-being of the 
athlete. In particular, adolescent athletes may have greater nutritional 
needs to meet requirements for training and to also support growth 
and development [1]. Nutritional needs for growth encompass 
energy for growing tissues [2] such as skeletal muscle. In addition 
tothe stimulus of training for sports, healthy growth of skeletal 
muscle during childhood and adolescence requires additional 
energy [1,2] and protein requirements [1,3,4] to replace losses from 

exercise, sustain a net protein balance, and support normal growth 
and development [3,5]. Depending on the volume of exercise 
training, carbohydrate intake may need to be enhanced to meet 
energy requirements of training and restore muscle glycogen stores 
between training sessions [6]. Consequently, recommendations for 
adolescent athletes vary from 5 - 7 g·kg-1·d-1 to upwards of 10 g·kg-

1·d-1, depending on training volume [6]. Educating young athletes on 
these basic needs and the competing influences of sport and growth 
demands has become paramount.

In addition to macronutrient needs, adequate micronutrient 
intake is essential for performance. Iron, in particular, is an essential 
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micronutrient for performance with roles such as production of 
red blood cells, oxygen transport, and transport of electrons during 
oxidative phosphorylation [7–10]. Young athletes have greater 
dietary iron needs corresponding to high growth rates of bone and 
muscle, onset of menarche in females, and insufficient dietary iron 
intake [11–14]. In addition to these maturity-related influences is the 
increased risk of iron losses associated with training demands [15,16], 
suggesting that youth athletes may show a heightened demand for 
dietary iron. Since many youth athletes are iron deficient [14,17–19], 
highlighting this important nutrient within a sports nutrition-focused 
education curriculum may attenuate or prevent the development 
of poor iron status in at-risk youth athletes to enhance athletic 
performance and overall health.

Improvements in self-esteem, nutrition knowledge, self-efficacy 
and self-reported dietary intakes have been reported in previous 
studies examining nutrition education interventions [20–25]. For 
example, nutrition education administered to college female athletes 
have aimed to improve nutrition knowledge and self-efficacy towards 
making healthful dietary choices and improving dietary intake [21]. 
Nutritional knowledge and self-efficacy for the treatment group 
improved, with no changes in the control group. However, there 
were no specific improvements in self-reported dietary intakes [21]. 
Nutrition education coupled with supervised resistance training in 
male college athletes has also enhanced nutritional knowledge, as well 
as improved measurements of dietary intake, body composition, and 
performance [25]. However, little is known regarding the effects of a 
nutrition education intervention alone on quantitative outcomes of 
athletic performance and nutritional status, such as biomarkers of 
iron status.

An online educational curriculum may be an easily accessible, 
appealing method to teach young athletes about sports nutrition. 
Quantitative outcomes such as improved athletic performance scores 
and iron biomarker concentrations would demonstrate definitive, 
positive adaptations through sports nutrition education. Therefore, 
the purpose of this study was to examine the effects of an online 
sports nutrition education curriculum on athletic performance and 
iron status in high school male and female athletes. We hypothesized 
that athletic performance scores and biomarkers of iron status would 
improve after participating in the eight-week sports nutrition-focused 
curriculum.

Materials and Methods

Study design

A repeated measures design was used to evaluate changes in iron 
status biomarker concentrations and athletic performance before 
and after participating in a sports nutrition education curriculum. 
Participants were tested twice, before (pre-) and after (post-) 
completion of the curriculum. This study was conducted at two 
separate rural high schools in the Midwest, and testing took place in 
the school gymnasiums. Equipment was set-up by the investigators 
in the same manner, and participants were tested at the same time 
of day (±1 hour) during the pre- and post-curriculum testing. 
Baseline anthropometrics included standing and seated height, body 
mass, skinfolds at three sites, and circumferences at two sites. Each 
testing session measured vertical jump (VJ), broad jump (BJ), pro-
agility (PA), L-cone (LC), 20-yard dash (20YD), and power push-up 
(PPU). Capillary blood samples were also taken for measurements 

of hemoglobin (Hb), ferritin, and soluble transferrin receptor (sTfR) 
concentrations. Independent variables included time (pre- and post-
curriculum) and sex.

Participants

Male (n=66) and female (n=73) high school students volunteered 
to participate in this study. All participants were high school students 
ranging from 14 – 18 years old. To be included in this per protocol 
analysis, each participant must have (a) been actively participating in 
school-or club-sponsored sports with regular practices, (b) provided 
capillary blood samples at the pre- and post-curriculum assessments, 
(c) participated in all anthropometric and athletic performance 
testing at the pre- and post-curriculum assessments, and (d) actively 
participated in the 8-week sports nutrition curriculum. To determine 
athletic status, an exercise and sport history questionnaire was 
administered during the introductory section of the curriculum. 
Twenty-eight students (males, n=15; females, n=12) did not complete 
the questionnaire, and 22 students (males, n=6; females, n=16) 
were not actively involved in any school- or club-sponsored sports; 
subsequently, these participants were excluded in this analysis. 
Of the remaining 89 participants, only 53 (males, n=25; females, 
n=28) provided capillary blood samples at both testing sessions. Of 
these, only 43 participants (males, n=18; females, n=25) completed 
all athletic performance testing as well as the 8-week curriculum; 
subsequently, only data from these participants were analyzed 
and reported in the present study. This study was approved by the 
University of Nebraska-Lincoln Institutional Review Board for the 
protection of human subjects (IRB # 20180117682EP, Title: Sports 
Nutrition and Performance in High School Athletes, approval date: 
January 4, 2018). Each participant signed an approved youth assent 
form, and at least one parent or legal guardian of each participant 
signed an approved informed consent document. All participants 
also completed The Physical Activity Readiness Questionnaire for 
Everyone(PAR-Q+) [26] and answered affirmatively for participation 
in the athletic performance assessments.

Anthropometrics

Height (cm) and body mass (kg) were measured using a beam 
scale with attached stadiometer (Seca gmbh & co. kg, Hamburg, 
Germany). Seated height was measured for calculating maturity offset 
to predict age at peak height velocity (PHV) [27]. Measurements 
of body composition included percent body fat (BF%), fat-free 
mass (FFM), arm estimated cross-sectional area (eCSA), and thigh 
eCSA. To calculate BF%, skinfold measurements were taken with a 
Lange caliper (Model 68902, Cambridge Scientific Industries, Inc., 
Cambridge, MD, USA). Three-site skinfold measurements were 
taken on the right side of the body and were recorded to the nearest 
0.5 mm [28] to be entered into equations established by Housh et 
al. [29] and Brozek et al. [30] to estimate body density and BF%, 
respectively. Arm and thigh circumferences were measured with a 
Gulick measurement tape (Baseline® measurement tape with Gulick 
attachment, Fabrication Enterprises, White Plains, NY) and recorded 
to the nearest 0.1 cm. Arm circumference and triceps skinfold were 
used to calculate arm eCSA, while thigh circumference and thigh 
skinfold were used to calculate thigh eCSA as described previously 
[31].

Dietary intake

A total of 40 participants (males, n=16; females, n=24) completed 
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a 24-hour dietary recall at baseline. Only 3 participants (males, n=2; 
female, n=1) failed to complete the dietary recall. The recall was 
administered online using the Automated Self-Administered 24-hour 
(ASA24®) Dietary Recall System. Participants were prompted with 
detailed questions regarding food intake, including serving sizes and 
composition of food choices. Total energy (kcal·d-1), carbohydrate 
(g·d-1), protein (g·d-1), fat (g·d-1), and iron (mg·d-1) intakes were 
quantified and reported from the ASA24®.

Athletic performance

Athletic performance testing was conducted in a manner similar 
to the National Football league (NFL) scouting combine as described 
previously [32]. The VJ test assessed peak vertical power output and 
maximal jump height (VJPP and VJH, respectively). Vertical ground 
reaction forces were sampled with force plates (PASCO PS-2142, 
PASCO Scientific, Roseville, CA) located under the participants’ 
feet while they performed counter-movement vertical jumps. 
Participants were instructed to begin by standing in an upright 
position with their feet in the middle of the force plates and their 
knees and hips extended. Then, participants rapidly descended into 
an eccentric counter-movement of self-selected depth, followed by 
a maximal, explosive, concentric vertical jump. VJH was measured 
with a standard, free-standing jump height device (Sports Imports, 
Freestanding Vertec Jump Trainer, Hilliard, OH, USA) and was 
calculated as the difference between a two-handed standing reach 
(cm) and the highest jump height achieved (cm). VJPP was calculated 
using the sum of the left- and right-foot vertical ground reaction 
forces with previously-described methods [33]. The BJ assessed 
horizontal jumping performance, recorded as the distance between 
the starting line and the heel of the participant closest to the starting 
line (cm) after the participant jumped forward. Agility performance 
was assessed as described previously [32] by the PA and LC tests, 
while the 20YD tested linear speed. These performance tests were 
measured in seconds (s) using digital, laser beam-actuated timing 
gates with motion start sensors (Brower Timing Systems, Brower TC 
Motion Start Timer, Knoxville, TN, USA). Splits were recorded at the 
5- and 10-yard markers during the 20YD.

Finally, the PPU test was performed to examine upper body 
strength (PPUF) and power (PPUPP). Ground reaction forces were 
collected using force plates (PASCO-PS-2142, PASCO Scientific, 
Roseville, CA). The raw force data were stored on a personal computer 
and analyzed offline using custom written software (LabVIEW,v. 
170.0 National Instruments, Austin, TX, USA). PPUF(N) and 
PPUPP(W) were calculated based on methods described in detail 
elsewhere [34]. Based on the recommendations of De Ste Croix [35], 
all athletic performance variables were expressed and analyzed in 
absolute (original units) and relative (original units per kilogram of 
body mass) units.

Iron status biomarkers

Capillary blood samples of 400 µL were collected in microvettes 
(Microvette® 200 µL, K3 EDTA, violet US code; 10.8 mm x 46.6 
mm) to analyze ferritin (µg·L-1) and sTfR (nmol·L-1). Plasma from 
the capillary samples was stored at -80°C after centrifugation until 
analysis. Commercially available enzyme-linked immunosorbent 
assay (ELISA) kits were used to assess concentrations of ferritin 
(Ramco Laboratories, Inc., Houston, Texas) and sTfR (R&D 
Systems Inc., Minneapolis, Minnesota). ELISAs were performed 

per manufacturer instructions, and all samples were analyzed in 
duplicate. Limits of detection for ferritin and sTfR were 0.59 µg·L-

1 and 0.5 nmol·L-1, respectively. In a previous study performed 
by this laboratory involving similar participants  [36], none of the 
participant’s blood samples met the threshold for human alpha 1-acid 
glycoprotein (AGP) of > 1 g·L-1 [37], indicating that correcting these 
iron biomarkers for inflammation was unnecessary. Hb concentration 
(g·L-1) was assessed on site during the performance testing with a 
handheld hemoanalyzer (AimStrip®Hb Hemoglobin meter, Germaine 
Laboratories, Inc.). Two cutoffs for ferritin concentrations were 
utilized in this study: < 30 µg·mL-1 for iron depletion and < 15 µg·mL-1 
for iron deficiency [38,39]. Low tissue iron levels were determined by 
sTfR concentrations > 21 nmol·L-1 [40]. Anemia was classified with 
Hb concentrations <120 g·L-1 for males and females 12 - 15 years 
and <130 g·L-1 for males older than 15 years [41]. All biomarkers of 
iron status were expressed in absolute (original units) and relative 
(original unit per kilogram of FFM) units.

Sports nutrition curriculum 

A basic sports nutrition education curriculum was developed 
to be accessible online through a learning management system 
(Instructure, Inc. 2019, Salt Lake City, UT, USA).The curriculum 
was modeled from a sports nutrition curriculum developed at 
Michigan State University, (http://spartanperf.com/) and consisted of 
seven total lessons emphasizing athletic performance test protocols, 
macronutrient and micronutrient intake, building a performance 
plate, energy balance, timing of intake, and dietary supplements 
(canvas.instructure.com/courses/sportsnutrition). After approval by 
both school’s administrative leadership, the young student-athletes 
enrolled into the curriculum. The introductory lesson showed video 
clips of the athletic performance test procedures, emphasizing 
correct techniques. The introductory lesson also contained a link 
and instructions to complete a 24-hour dietary recall administered 
online using the Automated Self-Administered 24-hour (ASA24®) 
Dietary Recall System. The introductory lesson was completed by all 
participants prior to the pre-curriculum assessments. Once the pre-
curriculum assessments were complete, the participants were able to 
continue to the second lesson in the online curriculum. Completion 
of all lesson activities was required before the student could proceed 
to the next lesson. Lesson activities included watching each lesson’s 
introductory video, short lecture display with voiceover, infographic 
resources, homework assignments, and a short quiz. Athletes 
completed one lesson per week on average and completed the post-
curriculum assessments during the week after the final curriculum 
lesson was completed.

Statistical analyses

Data were evaluated for distributional normality with the 
Shapiro-Wilk test. Variables exhibiting non-normal distributions 
were subsequently analyzed after log transformation [42] or with a 
nonparametric rank transform procedure [43]. One-way ANOVAs 
were used to compare the mean values of males versus females at 
baseline (Table 1). Mixed factorial ANCOVAs (time x sex) compared 
the corrected means for absolute and relative values of athletic 
performance and biomarkers of iron status (Table 2). Anthropometric 
variables that were significantly different between males and females 
at baseline (height, arm eCSA, and thigh eCSA, p<0.001-0.006) 
were used as covariates in the ANCOVA models. Statistical analyses 

http://spartanperf.com/
https://canvas.instructure.com/courses/1532505
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Table 1: Means ± standard deviations for baseline anthropometrics and dietary intakes of the male and female high school athletes.

Composite (n=43) Males (n=18) Females (n=25) p-value

Age (y) 16.3±1.0 16.6±1.1 16.1±1.0 0.141

Maturity Offset (y) 2.3±0.9 1.7±1.0 2.8±0.6 <0.001*

Height (cm) 168.84±9.38 176.72±7.09 163.17±6.19 <0.001*

Body Mass (kg) 67.13±15.84 71.47±15.13 64.01±15.90 0.129

Percent Body Fat (%) 22.18±10.08 16.44±8.67 26.24±9.11 0.001*

Fat Free Mass (kg) 51.99±10.32 59.61±10.07 46.28±5.96 <0.001*

Arm Estimated Cross-sectional Area (cm2) 19.10±10.82 28.88±7.30 12.17±6.75 <0.001*

Thigh Estimated Cross-sectional Area (cm2) 119.31±35.61 136.94±32.40 106.83±32.91 0.006*

Energy Intake (kcal·d-1)† 2238±1140 3017±1304 1719±627 0.001*

Carbohydrate (g·d-1)† 266±138 350±158 210±89 0.007*

Protein (g·d-1)† 86±48 118±58 65±24 0.001*

Fat (g·d-1)† 95±56 131±65 72±32 0.003*

Iron (mg·d-1)† 15±9 21±10 12±7 0.001*

*Indicates a significant difference between males and females at baseline (p≤0.05).
†Included three less participants (composite, n=40; males, n=16; females, n=24).

Table 2: Means (unadjusted) ± standard deviations for pre- and post-curriculum measurements of athletic performance and biomarkers of iron 
status for the male and female high school athletes.

Composite (n=43) Males (n=18) Females (n=25)

Pre Post Pre Post Pre Post

Vertical Jump Height (cm)* 45.41±11.61 45.37±14.43 55.61±8.93 55.53±12.12 38.07±6.73 38.05±11.28

Vertical Jump Height (cm·kg-1)* 0.70±0.19 0.73±0.21 0.81±0.17 0.81±0.21 0.63±0.18 0.67±0.18

Vertical Jump Peak Power (W)* 1978.84±922.98 2994.80±1153.22 2734.85±806.19 3722.05±1027.04 1434.52±541.43 2316.03±811.07 

Vertical Jump Peak Power (W·kg-1)* 29.46±12.01 42.86±13.17 39.04±11.17 52.41±11.04 22.56±6.75 33.92±7.53

Broad Jump (cm)* 175.35±37.42 182.21±36.20 206.45±31.44 216.39±22.71 152.96±22.42 157.58±20.47

Broad Jump (cm·kg-1)* 2.73±0.75 2.76±0.70 3.04±0.74 3.06±0.72 2.50±0.68 2.55±0.61

Pro-agility (s)* 5.85±0.75 5.93±0.69 5.20±0.36 5.39±0.50 6.33±0.57 6.32±0.52

Pro-agility (s·kg-1) 0.09±0.02 0.091±0.02 0.08±0.2 0.08±0.02 0.10±0.02 0.10±0.02

L-cone (s)* 10.36±1.59 10.24±1.40 9.25±0.98 9.15±0.95 11.28±1.40 11.03±1.13

L-cone (s·kg-1) 0.16±0.06 0.16±0.04 0.14±0.04 0.13±0.03 0.18±0.06 0.18±0.04

20-yard Dash (s)* 3.71±0.45 3.72±0.49 3.36±0.24 3.41±0.47 3.97±0.40 3.94±0.37

20-yard Dash (s·kg-1) 0.06±0.02 0.06±0.02 0.05±0.01 0.05±0.02 0.06±0.02 0.06±0.01

Power Push Up Force (N) 232.16±115.52 259.10±119.84 307.41±115.91 321.24±148.03 173.26±74.99 213.18±65.84

Power Push Up Force (N·kg-1) 3.41±1.48 3.72±1.42 4.29±1.50 4.29±1.81 2.72±1.05 3.30±0.88

Power Push Up Peak Power (W) 580.07±440.99 851.25±579.20 693.65±495.73 899.14±662.51 491.18±380.61 815.86±521.91

Power Push Up Peak Power (W·kg-1) 8.66±7.02 12.45±8.50 9.54±7.00 11.92±8.16 7.97±7.11 12.85±8.91

Ferritin (µg·L-1) 30.85±28.69 27.43±19.97 40.39±30.90 35.95±24.92 23.97±25.43 20.98±12.66

Ferritin (µg·L-1·kg FFM-1)* 0.61±0.55 0.54±0.35 0.71±0.52 0.62±0.40 0.54±0.56 0.48±0.31

Prevalence of Iron Deficiency 12 (28.0%) 15 (34.9%) 3 (16.7%) 4 (22.2%) 9 (36.0%) 11 (44.0%)

Prevalence of Iron Depletion 27 (63.0%) 30 (69.8%) 7 (39.0%) 9 (50.0%) 20 (80.0%) 21 (84.0%)

Soluble Transferrin Receptor (nmol·L-1) 16.74±7.06 19.77±8.71 16.99±5.56 18.50±5.31 16.56±8.07 20.69±10.51
Soluble Transferrin Receptor 

(nmol·L-1·kg FFM-1) 0.33±0.15 0.40±0.20 0.29±0.09 0.32±0.10 0.36±0.18 0.46±0.24

Prevalence of Low Tissue Iron 8 (18.6%) 11 (25.6%) 4 (22.2%) 5 (27.8%) 4 (16.0%) 6 (24.0%)

Hemoglobin (g·L-1) 137.5±17.1 140.0±20.3 140.9±18.3 147.1±21.6 135.1±16.1 134.9±18.0

Hemoglobin (g·L-1·kg FFM-1) 2.8±0.6 2.8±0.6 2.5±0.6 2.5±0.6 3.0±0.5 3.0±0.6

Prevalence of Anemia 6 (14.0%) 7 (17.3%) 3 (16.7%) 3 (16.7%) 3 (12.0%) 4 (16.0%)
*Indicates a main effect for sex (p≤0.05) in which males performed better and had higher concentrations than females, collapsed across time, when 
covarying for height, arm eCSA, and thigh eCSA.
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were performed using IBM SPSS Statistics, Version 25 (IBM Corp., 
Chicago, IL, USA). An alpha of p≤0.05 was considered statistically 
significant for all comparisons. 

Results
Means ± standard deviations for baseline anthropometrics and 

dietary intakes are reported in Table 1. Pre- and post-curriculum 
performance measurements and biomarkers of iron status are 
reported as unadjusted means ± standard deviations in Table 2. The 
Shapiro-Wilk test indicated non-normal distributions for all baseline 
dietary intakes, as well as pre- and post-curriculum ferritin and sTfR 
concentrations (p<0.001 – 0.019). Values were log-transformed and 
re-evaluated for normality. Only sTfR concentrations remained non-
normal (p<0.001); thus, sTfR concentrations were rank-transformed 
and statistical analyses were performed on the ranks. All other log-
transformed variables were normally distributed (p>0.05) and were 
subsequently used for all statistical analyses. 

One way-ANOVAs indicated significant sex differences at 
baseline for maturity offset, height, BF%, FFM, arm eCSA, thigh 
eCSA, energy intake, protein, carbohydrates, fat, and iron (p<0.001 
– 0.007) (Table 1). There were no baseline differences between males 
and females for body mass or age (p=0.129 and p=0.141, respectively). 
The mixed factorial ANCOVAs indicated no time x sex interactions 
and no main effects for time (p=0.070 – 0.977). There were, however, 
significant main effects for sex, indicating that males were greater than 
females for VJH, VJH·kg-1, VJPP, VJPP·kg-1, BJ, BJ·kg-1, PA, LC, 20YD, 
and ferritin concentrations (p<0.001 – 0.039) collapsed across time 
(Table 2). There were no sex differences (collapsed across time) for 
PA·kg-1, LC·kg-1, 20YD·kg-1, PPUF, PPUF·kg-1, PPUP, PPUP·kg-1, Hb, 
Hb·kg FFM-1, ferritin·kg FFM-1, sTfR, and sTfR·kg FFM-1 (p=0.075 – 
0.952).

Individual changes occurred from pre- to post-curriculum for 
the classifications of iron status biomarkers. One female improved 
from iron deficient to iron depleted, one male improved from iron 
deficient to normal, and four athletes (males, n=2; females, n=2) 
improved from iron depleted to normal when examining individual 
ferritin concentrations. Four athletes decreased from iron depleted 
to iron deficient (males, n=2; females, n=2), while seven athletes with 
normal ferritin concentrations became iron depleted (males, n=4; 
females, n=3). Therefore, 14% (6 out of 43) improved their ferritin 
status, while 26% (11 out of 43) exhibited decreases in ferritin status. 
One male and three females improved their iron tissue levels (9%, 4 
out of 43), while two males and five females changed from normal to 
low tissue iron levels (16%, 7 out of 43) when examining individual 
sTfR concentrations from pre- to post-curriculum. Three males 
and one female were no longer anemic (9%, 4 out of 43); however, 
three males and two females became anemic (12%, 5 out of 43) when 
tallying individual Hb responses over time.

Discussion
Our primary findings indicated that the eight-week online 

sports nutrition education curriculum used in the present study did 
not improve athletic performance or iron status in male or female 
high school athletes. These findings suggest that online education 
alone is not sufficient to improve athletic ability or iron status in 
this population. While an online nutrition education curriculum 
emphasizing sports nutrition concepts is convenient, easily 
accessible, and appealing for teachers and coaches of young athletes, 

such an approach may not manifest in quantitative improvements in 
performance or iron status.

Previous studies have examined education programs focusing on 
sports nutrition in athletes, but few have translated into measurable 
improvements in performance [20,21,25]. For example, Curry et al. 
[20] reported that athletes enrolled in a performance enhancement 
educational course exhibited higher scores for hope, self-esteem, 
and sports confidence than athletes in the control group, but no data 
quantifying performance were included. Abood et al. [21] showed 
improvements in nutrition knowledge and self-efficacy in college 
female athletes, with no improvements in a control group after an 
educational intervention. However, the authors reported no changes 
in dietary intake after the nutrition education program [21]. Rossi et al. 
[25] showed that a sports nutrition education intervention in NCAA 
Division I male baseball players improved nutritional knowledge and 
dietary intake. Furthermore, when coupled with supervised resistance 
training, the authors’ program also improved body composition and 
performance [25]. Collectively, the results of the present study in high 
school athletes, in conjunction with previous studies [20–24], suggest 
that sports nutrition education interventions alone are insufficient for 
improving physical performance or nutritional status outcomes.

Anthropometric, body composition, and performance differences 
between the males and females were observed at baseline in the 
present study. It has long been known that adolescent males and 
females differ in muscle CSA, fat mass, weight, and height [44–46]. 
However, even after controlling for sex differences in anthropometry 
and body composition variables in the present study, sex-related 
differences in most of the athletic performance tests were still present 
at pre- and post-curriculum (Table 2). Specifically, males performed 
20 - 91% better in unadjusted absolute and relative lower-body 
strength and power (VJH, VJPP, and BJ). Males also performed 15 
-28% better in agility (PA and LC) and 13-17% better in linear speed 
(20YD) than females, but the sex differences in agility and speed (PA, 
LC, and 20YD) disappeared when expressing values relative to body 
mass (Table 2). Despite covarying for height, arm eCSA, and thigh 
eCSA, sex differences between the adjusted means were still present 
for VJH, VJPP, and BJ, regardless if they were expressed as absolute or 
relative terms (Table 2). Our findings regarding lower-body strength 
and power were consistent with O’Brien et al. [47] who demonstrated 
that sex differences in strength can only be eliminated when expressed 
per unit of muscle cross-sectional area. In contrast, our findings 
suggested that both male and female adolescents can be compared on 
the same scale for speed and agility, but only when expressing scores 
relative to body mass.

As expected, males performed 10 – 77% better than females in 
absolute measures of upper-body strength and power (PPUF or 
PPUPP) (Table 2). However, there were no differences between males 
and females for PPUF or PPUPP when normalizing for body mass and 
covarying for height, arm eCSA, and thigh eCSA (Table 2). While 
sex differences in strength and power are usually more profound for 
the upper-body versus lower-body in adolescents after the onset of 
puberty [48,49], muscle mass accounting for the variance in strength 
measurements aligns with previous studies [48,50–52]. For example, 
Wood et al. [52] reported that sex differences in elbow flexion and 
extension were eliminated after accounting for differences in muscle 
size. Hosler and Morrow [48] reported that sex only accounted for 
1% and 2% of the variance in muscle strength in the upper-body 
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and lower-body, respectively, after differences in body size and 
composition were accounted for. The results of the present study, in 
conjunction with previous findings [48–52], suggest that adjusting for 
muscle mass may account for sex differences in upper-body strength 
in adolescents.

On average, the females in the present study were 1.1 years more 
mature than the males, despite being equal in chronological age (Table 
1). However, the females in the present study were also 8% shorter, 
exhibited the same body mass (statistically), 10% greater percent body 
fat, 22% less fat free mass, 58% less eCSA for the arm, and 22% less 
eCSA for the thigh on average than the males. Therefore, despite the 
females being more mature, anthropometric differences in the present 
sample appeared to be most prominent in muscle mass, body fat, and 
stature. It is known that females typically reach peak height velocity 
at a younger age than males [53]. Males, however, experience greater 
muscle hypertrophy and begin to athletically outperform females at 
pubertal onset [54,55] which coincides with PHV [56–58]. These sex 
differences in maturity offset are thought to coincide with hormonal 
responses, particularly the testosterone increase in males [54,59,60]. 
Although not collected in the present study, higher concentrations 
of testosterone in males often results in greater skeletal muscle 
hypertrophy [54,61]. Since muscle mass differences in males and 
females are usually a consequence of physical maturity differences, 
our findings suggest that the greater maturity offset in the females 
could not overcome the influence of muscle mass, body composition, 
and stature when comparing absolute performance scores. 

Males and females in the present study also exhibited baseline 
differences in recorded dietary intake. Specifically, females showed 
43% less energy intake, 40 – 45% less carbohydrate, protein, and 
fat intake, and 43% less iron intake than the males (Table 1). Males 
showed energy intakes that fell within the general recommendations 
of 2,804 – 3,799 kcalskcal·d-1 for 14 – 18-year-old males who are 
active to highly active [62]. Conversely, energy intake in the females 
fell below the 2,309 – 2,833 kcal·d-1 recommendations [62], with an 
average intake of 1,719 kcal·d-1. Carbohydrate intake in the males and 
females was 46% (4.7 g·kg·d-1) and 49% (3.3 g·kg·d-1) of total energy 
intake, respectively. Both males and females fell below carbohydrate 
recommendations for athletes of 5 - 7g·kg-1·d-1 [6,63]. Protein intakes 
of 1.2 – 1.8 g·kg-1·d-1 are recommended for adolescent athletes [63,64], 
and the males were within this range with an average protein intake of 
1.65 g·kg-1·d-1. However, the females were below this recommendation 
with an average intake of 1.02 g·kg-1·d-1 (Table 1). In contrast, fat 
intake for both males and females was higher than recommendations 
of 25 – 35% of total energy intake [62,65]. While iron intake exceeded 
recommendations for males, females were below the recommended 
daily allowance (RDA) of 15 mg·d-1 [11] (Table 1). Overall, these 
baseline dietary intakes suggested that the adolescent female athletes 
of the present study were not meeting recommendations for energy 
intake, carbohydrate intake, protein intake, or iron intake. The 
males fell below guidelines for only carbohydrates. Thus, replacing 
fat intake for both male and female adolescent athletes with healthy 
carbohydrate choices, such as whole grains, fruits, and vegetables, 
may resolve some insufficiencies. However, increasing protein intakes 
that also provide iron, such as beef, in female athletes may address the 
most glaring deficiencies.

With the exception of a decrease in ferritin concentrations relative 
to fat-free mass, there were no differences in biomarkers of iron 
status from pre- to post-curriculum. Previous studies examining iron 

status have also found no change or decreasing values in biomarker 
concentrations [66–68]. For example, Auersperger et al. [66] showed 
that female runners exhibited lower hepcidin and hemoglobin 
concentrations and higher sTfR concentrations after eight weeks 
of exercise training [66]. However, in studies administering iron 
supplementation as an intervention in adolescents and adults, 
improvements in iron status [69,70], as well as performance [71–73], 
have been reported. Food interventions may also be an effective 
method by which to improve iron status. Lyle et al. [74] reported 
that beef supplements improved serum ferritin, iron, iron-binding 
capacity, and hemoglobin in exercising women, even more effectively 
than iron supplementation [74]. Future studies should examine 
the effects of beef supplementation on iron status and athletic 
performance in adolescent athletes.

A strength of this study is the uniqueness in examining measurable, 
quantitative outcomes such as athletic performance and iron status, 
in response to an online sports nutrition education. Adolescents are 
a protected population, making a research study providing multiple 
assessments of athletic performance and three different biomarkers 
of iron status pre- and post-intervention contributory to research. 
However, there are certain limitations. A one-day dietary recall was 
obtained from participants at the beginning of the study, yet was 
unable to be obtained at the end of the study. Another limitation is 
the lack of data on sports nutrition knowledge and attitudes from the 
young athletes. Quizzes were completed at the end of each lesson, 
with average quiz scores for each lesson at 76% or higher, indicating 
that much of the information was retained. However, we did not 
perform pre- and post-nutrition knowledge questionnaires. The 
purpose of the study was to measure athletic performance and iron 
status, rather than qualitative assessments of knowledge. Since there 
is much literature available examining nutrition knowledge changes, 
this study emphasized quantitative, applied physiological outcomes 
in response to the curriculum.

For this introduction to implementing online sports nutrition 
education curricula into high schools, we allowed the teachers to 
deliver the curriculum in a method most conducive to their particular 
classroom. This reduced the amount of control researchers had on 
implementation and compliance, possibly influencing the lack of 
improvement in athletic performance and iron status. A longer 
period of time for the intervention may also be necessary in order to 
see improvements.

In conclusion, an eight-week online sports nutrition education 
curriculum did not improve athletic performance or iron status in the 
male and female high school athletes. As expected, males performed 
better than females when examining absolute scores (Table 2). 
However, performance was equated for speed and agility, as well as 
upper body strength and power, when scores were expressed relative 
to body mass (Table 2). Furthermore, dietary records suggested that 
young female athletes do not meet recommendations [6,11,62–65] 
for energy intake, carbohydrate intake, protein intake, or iron 
intake, whereas young male athletes do (Table 1). Thus, despite no 
improvements in athletic performance or biomarkers of iron status, 
high school-aged female athletes, specifically, may need continual 
sports nutrition education to promote dietary intakes to fall within 
recommended ranges [6,11,62–65]. Future studies are needed to 
study combined education- and exercise-related interventions to 
improve performance and iron biomarkers, as well as the effects of 
online sports nutrition education on dietary intake and records.
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