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ABSTRACT
The incidence of infection associated with primary total knee arthroplasty (TKA) is up to 2.5% with $1.62 billion estimated in system 

costs. Adverse outcomes depend on bacterial species with methicillin resistant strains carrying the highest burden. Prior research has focused 
on Staphylococcus aureus. Our study identifies the species and resistance patterns of coagulase negative Staphylococcus species that infect 
knee prostheses. TKA infections positive for coagulase negative Staphylococcal species subsequently treated by four joint surgeons from 
2015-2019 were included. Matrix-assisted laser desorption ionization (MALDI) time of flight mass spectrometry was used and scores greater 
than 2.00 were considered to identify unique species. There were 68 TKA infections treated during the study period and 29 (42%) cultured a 
coagulase negative Staphylococcal species. Of these, 16 (55%) were S. epidermidis, 6 (21%) were S. lugdunensis, 5 (17%) were S. capitus, 1(3%) 
was S. warneri and 1 (3%) was S. haemolyticus. Further, 14 (48%) were positive for the mecA gene conferring resistance to methicillin. All 
species were identified by MALDI with an average score of 2.12 ± 0.13. Coagulase negative Staphylococcal species from TKA infections showed 
a range of species which could suggest multiple etiologies for sustaining an infection . While the mecA gene was present more commonly than 
reported averages, it was present in strains with resistance to many antibiotics not just beta lactams.
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Introduction
Prosthetic joint infection (PJI) is a devastatingly complication 

after total knee arthroplasty (TKA). The incidence of PJI after primary 
TKA is estimated up to 2.5% with an overall cost to the health system 
estimated at $566 million in 2009 rising to $1.62 billion by 2020 [1,2]. 
The specific subtypes implicated in PJI are extensively discussed in a 
review by Tande and Patel with Staphylococcus species accounting for 
62% of all infections across an aggregated 2,435 joints [3]. Methicillin-
resistant Staphylococcus aureus (MRSA) rates vary widely having 
been quoted from 23% to 61% [4-7]. The diversity and resistance 
patterns of infectious agents together with predisposing medical 
comorbidities create an adverse environment for patient outcomes 

from shorter infection-free periods, more revision surgeries, longer 
hospital stays, and higher costs [8-11]. 

However, the rate of adverse outcomes depends on bacterial 
subtype. A recent study of 149 infections of hip prostheses 
demonstrated Pseudomonas, Proteus, and MRSA infections were 
each correlated with lower infection-free rates, additional surgeries, 
and longer hospital stays compared to PJI with other organisms [12]. 
These findings have been corroborated by other studies investigating 
multi-drug resistant (MDR) PJI with failure rates from 10% to 33% 
[5,13]. The rate of PJI with MDR strains are less prevalent than 
susceptible strains in nearly all studies with no consensus on whether 
the rates are rising [14,15]. To better quantify these differences, a 
more detailed molecular understanding is necessary.
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Matrix-assisted laser desorption ionization time of flight (MALDI-
TOF) mass spectrometry provides increased specificity in organism 
detection through analysis of unique molecular signatures [16]. This 
has improved diagnostic sensitivity and led to new tools for species 
determinations even in approximately 60% of infections with normal 
erythrocyte sedimentation rate and C-reactive protein [17]. It has 
emerged as a cost effective, highly accurate alternative to polymerase 
chain reaction based strain identification and demonstrated accuracy 
above 93% to 99% in analysis of coagulase negative Staphylococcal 
species [18-23]. To our knowledge, there is no study of MALDI-TOF 
mass spectrometry molecular signatures for PJI in resistant bacterial 
strains. This study was designed to elucidate whether there were 
molecular commonalities between coagulase negative Staphylococcal 
species strains in the service of understanding the pathogenesis of PJI.

Methods
Following institutional review board approval, a retrospective 

chart review was undertaken for all primary periprosthetic knee 
infections treated by four knee arthroplasty surgeons (DFA, JIH, 
SBG, WJM) at a single institution from 2015-2019. All infections 
met Musculoskeletal Infection Society criteria initially with either a 
draining sinus tract or combination of minor criteria as delineated 
in Parvizi, et al. [24]. They also required confirmatory culture and 
sensitivity data from revision surgery (either synovial fluid or tissue) 
with ≥2 samples positive for the same organism to avoid the issue 
of contamination. Patients were included with coagulase negative 
Staphylococcal species grown in traditional fashion. Patients with 
chronic infections or culture negative infections were excluded.

MALDI-TOF mass  spectrometry was performed on overnight 
grown bacterial cultures. Individual colonies were picked with the 
sterile toothpick from nonselective sheep blood agar plates and 
thinly smeared directly on polished steel target. Smeared target spots 
were overlaid with 1 μl of a MALDI-TOF mass spectrometry matrix 
(portioned solution of α-cyano-4-hydroxycinnamic acid,  Bruker 
Daltonics, Bremen, Germany with 50% acetonitrile, 47.5% 
mass spectrometry grade water and 2.5% trifluoroacetic acid, Sigma-
Aldrich, Germany) and allowed to dry at room temperature. Mass 
spectra, ranging from 2,000 to 20,000 Da, were acquired using 

Microflex LT Biotyper (Bruker Daltonics, Bremen, Germany) in a 
linear positive mode at laser frequency of 30 Hz. The rest of detection 
parameters were set by the manufacturer. Instrument calibration was 
performed before spectra acquisition using freshly made bacterial 
test standard (BTS; Bruker Daltonics, Bremen, Germany). Data was 
analyzed using the Bruker Biotyper 3.4 software and MBT Compass 
Library – RUO 7311 (Bruker Daltonics, Bremen, Germany). Species 
level identification was determined by using an in-house validated 
score criteria, where scores from 1.800 to 3.000 indicate species 
level identification, sores from 1.700 to 1.799 indicate genus level 
identification, scores -1.699 indicate no reliable identification. 
Resistance was determined by diffusion disc method and the mecA 
testing was performed by nucleic acid amplificationin the traditional 
fashion on the same isolates. 

Categorical variables are expressed as number and percent while 
continuous variables are expressed as mean and standard deviation. 
Statistics were computed in STATA (StataCorp College Station, TX). 
Regressions were performed with statistical significance determined 
at p<0.05. When relevant, 95% confidence intervals (CI) are reported. 
For binary variables, chi-square proportion testing or logistic 
regressions were used reporting odds ratios (OR) while for count 
variables, Poisson regression was used reporting incidence rate ratios 
(IRR).

Results
There were 68 TKA infections treated during the study period and 

29 (42%) cultured coagulase negative Staphylococcal species. Of these, 
16 (55%) were S. epidermidis, 6 (21%) were S. lugdunensis, 5 (17%) 
were S. capitus, 1 (3%) was S. warneri and 1 (3%) was S. haemolyticus. 
Further, 14 (48%) were positive for the mecA gene conferring 
resistance to methicillin and all of these were S. epidermidis (Table 
1). All species were identified by MALDI-TOF mass  spectrometry 
speciation with a mean score of 2.12 ± 0.13.

The patients had a mean age of 67.0 ± 7.9 years at the time of 
revision operation; 17 (59%) were male and 12 (41%) were female. 
Their mean body mass index was 34.0 ± 7.3 kg/m2. The mean 
time from primary arthroplasty to infection identification was 

Table 1: Antibiotic resistance data by species subtype following disc diffusion resistance testing. Per laboratory protocol, not all isolates were tested 
against all antibiotics.

Antibiotic S. epidermidis S. lugdunensis S. warneri S. capitus S. haemolyticus

Penicillin 16 (100%) 3 (100%) 1 (100%) 4 (100%) 1 (100%)

Moxifloxacin 10 (77%) -- -- -- --

Erythromycin 11 (69%) 3 (50%) 1 (100%) 1 (20%) 0 (0%)

Levofloxacin 12 (80%) -- 0 (0%) -- --

Oxacillin 15 (94%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Clindamycin 8 (50%) 3 (50%) 0 (0%) 1 (20%) 0 (0%)

Trimethoprim-Sulfamethoxazole 10 (63%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Gentamicin 7 (44%) 1 (17%) 0 (0%) 0 (0%) 0 (0%)

Tetracycline 2 (13%) -- -- -- --

Rifampin 1 (7%) -- 0 (0%) -- --

Daptomycin 0 (05%) -- -- -- --

Linezolid 0 (0%) -- -- -- --

Vancomycin 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
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approximately 3.6 ± 4.7 years (range 0.1 – 18.8) and only 2 cases (7%) 
were documented within 90 days of the index procedure. Charlson 
comorbidity index (CCI) was calculated for each patient (mean 3.4 
± 2.0, range 1-9). 

MecA positivity correlated but did not significantly predict 
resistance to other antibiotic agents except trimethoprim-
sulfamethoxazole and oxacillin (Table 2). Regarding demographic 
predictors, mecA positivity also showed a trend toward more 
complicated patients (increased CCI) but was not significant (OR 
1.23, CI 0.82-1.83, p=0.314). Current or past smoking history 
was significantly correlated with less mecA positivity (OR 0.20, CI 
0.05-0.94, p=0.041). Time to infection did not correlate with mecA 
positivity (OR 1.15, CI 0.95-1.39 p=0.161), however it did correlate 
significantly with S. epidermidis in so far as later presenting infections 
were more likely to be infection with S. epidermidis than any other 
isolate (IRR 2.68, CI 1.70-4.21, p<0.001).

Discussion
PJI continues to be a morbid complication of TKA. Of the 

infections we analyzed further, coagulase negative Staphylococcal 
speciesdefined an important subgroup. Coagulase negative 
Staphylococcal species comprises a ubiquitous set of pathogens that 
demonstrate a range of clinical presentations from acute to chronic. 
In this series of TKA-PJI, all species were uniquely identified with 
MALDI species level specificity. S. epidermidis comprised most of the 
specific cultures. This is consistent with demonstrated epidemiologic 
incidence of indolent presentations [25]. S. epidermidis produces 
adhesive proteins specific for fibrinogen that mediate attachment 
to areas of scar formation facilitating localization to surgical wound 
beds. Further, it is known to produce polysaccharide intercellular 
adhesin when under hypoxic, osmotic, or antibiotic stress that in 
conjunction with implant hydrophobicity stimulates the production 
of biofilm [26]. A full review of biofilm and other pathogenic behavior 
of coagulase negative Staphylococcal speciesis beyond the scope of 
this article, but is well summarized elsewhere [27].

Unlike S. epidermidis which can be considered a contaminant 
(though not in the setting of clinically meaningful PJI), S. lugdunensis 
and S. warneri are always considered pathogenic. [28]. S. lugdunesis 
is classically penicillin-sensitive but in our cohort all strains were 
penicillin-resistant [28]. Recently, it was shown that S. lugdunensis 
PJI leads to increased clinical symptoms than either S. epidermidis 
or S. aureus [28]. This speaks to varying acuity of chronic infection 

exacerbations as well as the pathogenicity of S. lugdunensis in 
particular. S. warneri is isolated more rarely and is known to engage 
in biofilm production [29]. 

The results for mecA gene positivity in 48% of the cohort is 
consistent with if not slightly higher than other studies. MecA 
positivity was also correlated with resistance to many antibiotics not 
just cell wall synthesis inhibitors. In our cohort, 88% of S. epidermidis 
infections were resistant to gentamicin (of those resistant all were 
positive for mecA). Aminoglycoside resistance correlates with a “not 
cured” clinical outcome for coagulase negative Staphylococcal species-
PJI – from testing at 2 year follow up, patients with “not cured” clinical 
status had ongoing treatment for PJI of any type medical or surgical 
[30]. To this end, it is interesting that all mecA positive strains were 
S. epidermidis and that smoking was both protective against mecA 
positive infection and associated with an earlier time to infection. It 
is well known that smoking increases the risk of PJI, but our data 
suggests smoking increases susceptibility to less virulent organisms 
at an earlier time point.

The varying species of coagulase negative Staphylococcal species 
in our isolates suggest multiple organism strains have the capability to 
generate clinical infection predicated on biofilm formation and MDR 
status. However, many infections are considered to be polymicrobial 
[31]. Questions therefore remain concerning the specific molecular 
factors that permit PJI, how the infectious agent(s) change over 
time, and what specific treatments should be employed to target 
those mechanisms [32]. This will be particularly relevant as new data 
regarding mechanisms like quorum sensing emerge with targeted 
quorum inhibitors and bacteriophage therapy [33].

In addition to the limited number of patients included, this study 
was limited by MALDI-TOF requiring species that result in  
a positive culture. This study also relied on traditional methods for 
determining antibiotic resistance and mecA gene positivity. 

Conclusion
MALDI-TOF identified a range of coagulase negative 

Staphylococcal species that had wide and varied antibiotic resistance 
pattern. Interestingly, a history of smoking was protective against 
mecA positivity.
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